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The hypoglycemic agent metformin has been found to possess chemopreventive and direct antitumor
properties. Several clinical studies worldwide are using it as a monotherapy or as an add-on therapy with
chemotherapeutic drugs to determine prospectively its efficacy and safety in treating human cancer. In
terms of its mechanism of action, metformin moderately inhibits electron transport in mitochondria to
cause increased AMP:ATP ratios, which antagonize gluconeogenesis in hepatocytes, and to promote
catabolism in most tissues through activating AMP-activated kinase (AMPK). Inhibition of mammalian
target of rapamycin signaling through activation of AMPK has been suggested to mediate the antitumor
effects of metformin. However, AMPK-independent growth-inhibitory properties of metformin on tumor
cells have also been described, suggesting that antagonizing electron transport per se may be cytostatic
or cytotoxic to cancer cells. In addition, metformin was hypothesized to display antiviral and antimalarial
effects in 1950s, and recently it has been found to promote the generation of CD8 T memory lympho-
cytes, suggesting that its immune-activating effects may also contribute to its observed antitumor and
chemopreventive properties. Chronic administration of metformin has an acceptable toxicity profile and
is well tolerated by millions of patients with type 2 diabetes worldwide, suggesting that this agent could
potentially be a therapeutic component with low intensity if given in continuous dosing/frequent usage
schedules. These metronomic strategies show that metformin can inhibit tumor angiogenesis and acti-
vate antitumor immunity, indicating a potential therapeutic interaction with immune potentiation,
antitumor effects, and an acceptable toxicity profile. Here, we review current knowledge on metformin’s
signaling, metabolic, and immune effects, as well as data from clinical drug trials, to discuss how the
interplay may orchestrate the antitumor effects of this agent, particularly in combination with reduced-
intensity or metronomic chemotherapeutic use.

Copyright � 2012, Taipei Medical University. Published by Elsevier Taiwan LLC. All rights reserved.
1. Introduction

Metformin, a biguanide, was approved by the United States Food
and Drug Administration in 1995 as an oral hypoglycemic agent.
Given alone or in combination with a sulfonylurea, metformin
improves glycemic control and lipid concentrations in patients who
respond poorly to dietary control or to a sulfonylurea alone.

In this review, we discuss evidence for metformin’s potential
use as an antitumor drug. We will review the major mechanisms
related to its antitumor effects, clinical evidence of its antitumor
and chemopreventive effects, metronomic chemotherapydwhen
less is moredand the interaction of metronomic chemotherapy
and metformin.
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2. Major mechanisms related to antitumor effects of
metformin

The mechanisms underlying the action of metformin in exerting
antitumor effects can be summarized as follows.
2.1. Metabolic and signaling effects

Anisimov et al, in their pioneer work to understand the antitumor
mechanism of metformin, found that chronic administration of
metformin to female transgenicHER2/neumice significantly reduced
the number and size of mammary adenocarcinomas, partly through
downregulation of the insulin/insulin-like growth factor axis (IGF).1

This mechanism has already been observed in patients with type 2
diabetes2 and women affected by polycystic ovary syndrome.3

More recent experimental evidence indicates that this
biguanide can activate AMP-dependent kinase (AMPK), either by
by Elsevier Taiwan LLC. All rights reserved.
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suppressing the tumor suppressor kinase LKB1,4 or by
promoting an increase in AMP:ATP ratios.5 Activated AMPK can
in turn phosphorylate and activate TSC2, a negative regulator of
mammalian target of rapamycin (mTOR).6 Inhibiting mTOR
kinase activity can reduce signaling transduction through the
kinase Akt, and decrease the efficiency of protein synthesis via
decreased phosphorylation of the mTOR targets 4EBP-1 and S6K,
which are essential components of the cap-dependent trans-
lation machinery.7,8 The inhibition of cap-dependent translation
in response to metformin9 can result in decreased expression of
the oncogene Her210 and the cell cycle protein cyclin D1,11

illustrating a potential avenue via which metformin can modu-
late signaling and cell cycle effects.

Because AMPK is the energy sensor of the cell, metformin
also increases oxidative metabolism and reduces anabolism,
resulting in decreased lipid synthesis, protein synthesis, and so
on,12 in part through direct phosphorylation effects on key
metabolic targets such as acetyl CoA carboxylase (a committed
step in fatty acid synthesis) and phosphofructokinase-2 (the
master regulator of glycolysis).13 How metformin activates LKB1
remains unclear, but it has been shown that metformin can
increase the AMP:ATP ratio, the canonical signal to activate
AMPK, as a result of moderate inhibition of the electron trans-
port chain at the entry point of NADH, the mitochondrial
complex I.14

This latter evidence is also intriguing in light of Anisimov et al’s
original findings that metformin can also prolong the life span of
Her2mice, because it highlights the possibility that the reduction in
mitochondrial bioenergetics induced by metformin may be the
cellular mimic of caloric restriction, a well-documented longevity
and chemopreventive strategy.

2.2. Direct mitochondrial effects

Both the AMPK-independent antitumor effects of metformin
action, such as the Rag GTPase-dependent inhibition of mTOR,15

and metformin-induced growth inhibition of AMPK-silenced
ovarian cancer cells are important.16 Nearly 10 years ago, Owen
et al described how metformin can inhibit the mitochondrial
oxidation of complex I-dependent substrates in hepatocytes, an
effect that can also be observed in isolated mitochondria.14 As
discussed above, this inhibition of complex I may contribute to the
activation of AMPK due to the decrease in capacity for oxidative
phosphorylation and the subsequent increase in AMP:ATP ratio.
This phenomenon may also account for the occasionally observed
lactic acidosis in response to high doses of metformin,17 because
pyruvate is converted to lactate rather than to acetyl CoA in the
mitochondria.

The inhibition of hepatic gluconeogenesis in response to
metformin is an AMPK-independent consequence of decreased
intracellular ATP levels.5 This notion suggests that the pleio-
tropic effects of metformin could be the result of a targeted
effect on electron transport in the mitochondria.5 In light of
recent observations, this intriguing effect shows that inhibiting
electron transport in cancer cells is a lethal insult,18e20 not
because of an ensuing energetic catastrophe - cancer cells derive
most of their ATP from glycolysis - but because the accumula-
tion of NADH in the mitochondrial matrix can inhibit the Krebs
cycle and the associated amphibolic reactions that support the
generation of biomass.21

Electron transport, uncoupled from oxidative phosphorylation,
antagonizes the onset of apoptosis in tumor cells.19,21,22 This
supports the hypothesis that the antitumor and chemosensitizing
effects of metformin could also be mediated through inhibiting
electron transport in complex I.
2.3. Immune and hypothalamic effects

It is important to consider immune-modulating effects of metfor-
min as a mechanism underlying antitumor activity. This concept
was originally proposed in the 1950s by the Philippine physician
Garcia,23 who first recognized the important component of the
antitumor effects of metformin. A recent thought-provoking report
has shown that metformin can increase the number memory CD8 T
cells in wildtype mice, and in consequence significantly improve
the efficacy of an experimental anticancer vaccine.24 This report
suggested the mechanism that increased fatty acid oxidation in
response to metformin can mediate the generation of CD8 T cells.

However, this notion does not agree with the observation that
metformin inhibits electron transport in hepatocytes and hepato-
cyte mitochondria, and it is thus intriguing to hypothesize that
metformin modulates tissue-specific responses in mitochondrial
metabolism by inhibiting electron transport in hepatocytes instead
of promoting fatty acid oxidation in lymphocytes. Irrespective of
this, themechanism for the generation of memory CD8 Tcells could
be a critical component of the antitumor action of metformin.

Lastly, Ropelle et al have shown that hypothalamic AMPK acti-
vation in response to metformin reverses cancer anorexia in tumor-
bearing rats through inhibiting the production of proinflammatory
molecules and controlling neuropeptide expression in the hypo-
thalamus,25 suggesting another potential benefit of the use of
metformin as an adjuvant in cancer treatment, which warrants
further clinical exploration.

2.4. Metformin might have multiple mechanisms in exerting its
antitumor effect

Taken together, the observations described above indicate that the
beneficial effects of metformin as an adjuvant in cancer treatment
may be orchestrated via many (AMPK-dependent and -indepen-
dent) mechanisms that might antagonize tumor initiation and/or
progression, decrease cancer anorexia, and improve antitumor
immunity.

3. Clinical evidence for the antitumor and chemopreventive
effects of metformin

Recently, the Zwolle Outpatient Diabetes Project Integrating
Available Care (ZODIAC) study in The Netherlands reported that
metformin exerts chemoprotective activity against all types of
cancer in patients with type 2 diabetes.26 Retrospective studies by
a group from the University of Washington at Seattle, USA,27 and
another group from M. D. Anderson Cancer Center in Houston,
USA,28 confirmed that patients with type 2 diabetes treated with
metformin had a reduced risk of prostate and pancreatic cancer,
respectively.

Based on the available clinical and experimental data, Goodwin,
in an editorial in the 2009 Journal of Clinical Oncology, proposed the
use of metformin in the adjuvant treatment of breast cancer,29

mainly citing the drug’s ability to reduce hyperinsulinemia,30

which she had reported to be a negative prognostic factor for
recurrence.31 Of note, reduction in insulin level and the associated
decrease in IGF-1 signaling transduction were also suggested to be
a mechanism of action in the studies of Anisimov et al.1

The first evidence of the efficacy and safety of metformin as an
adjuvant in the treatment of breast cancer was reported by the
breast medical oncology group at M. D. Anderson Cancer Center in
a retrospective study of 68 diabetic patients taking metformin, 87
diabetic patients not taking metformin, and 2,374 nondiabetic
patients.32 Their results showed that diabetic patients with breast
cancer who received metformin and neoadjuvant therapy had
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a higher pathological response rate than diabetic patients not
receiving this agent. Importantly, the use of metformin was not
associated with adverse effects in cancer patients receiving
chemotherapy.32

Subsequently, Stanosz reported that treatment with metformin
in combination with hormonal agents in young women with well-
defined stage 1 endometrial carcinoma led to complete remission
of the disease after a 6-month treatment and 2-year follow-up.33

These findings suggest that the potential therapeutic benefits of
metformin are not limited to breast cancers. Most recently, a group
at Yokohama City University reported that a 1-month treatment
with metformin reduced the formation of aberrant crypt foci in
nine patients without diabetes, suggesting a potential use of met-
formin in preventing colon tumorigenesis.34

Taken together, the above-mentioned results and observations
suggest that chronic use of metformin antagonizes the initiation
and progression of cancer, as well as improving the outcome of
traditional chemotherapeutic strategies.

4. Metronomic chemotherapy: When less is more

Traditional anticancer drugs are used at or near the maximum
tolerated dose (MTD), with the goal of killing as many cancer cells
as possible, but with unintended consequences that impair quality
of life and cause serious, dose-accumulative toxic effects.35 To
balance the efficacy and safety of this “MTD approach” with
particular emphasis on reducing myelosuppressive effects, high
doses of chemotherapy are normally given once or on a few
Figure 1 Diagrammatic representation of the mechanism of action of metformin, which may
the generation of CD8 memory T lymphocytes, which would complement the reduction in
metronomic chemotherapy. (2) Inhibition of mTOR signaling coupled to the decrease in m
erating, chemosensitive tumor cells that would be more appropriately targeted by reduc
program, which effectively reduces the formation of tumor stroma and could potentiate th
expression of P-glycoprotein (P-gp), which could maximize the cytotoxic effects of low dos
may antagonize cancer cachexia, a benefit most likely maximized in patients receiving
monophosphate; AMPK¼ AMP-activated kinase; ATP¼ adenosine triphosphate; EMT ¼ epi
consecutive days, followed by 3e4-week periods of rest to allow
recovery of normal progenitor cells.35 However, the fact that most
cancer patients still suffer relapses suggests that high-dose
chemotherapy is largely ineffective in killing 100% of tumor cells,
and perhaps that the genomic instability caused by high-dose
chemotherapydas most chemotherapeutic agents directly
damage DNA or the machinery necessary for its maintenance/
replicationdis the fire that the cellular heterogeneity of tumors
fuels in choosing drug-resistant subclones that will no longer
respond to the MTD approach. Moreover, the inhibitory effects of
high-dose chemotherapy on the function of the immune system
may provide a window of time for these drug-resistant cells to
escape detection and/or to metastasize.36

Interestingly, recent evidence shows that targeted anti-
angiogenic agents provide a moderate therapeutic benefit in many
cancer patients,37 supporting a concept put forward nearly 40 years
ago by Folkman, who proposed targeting the tumor vasculature
instead of the tumor cell per se in order to inhibit the growth of
primary tumors and the spread of malignant cells to distant
sites.38,39 In this context, a preponderance of evidence suggests that
low-dose, continuous infusion or frequent administration of
certain chemotherapeutic agentsdbut not high-dose MTD
approachesdcan inhibit the proliferation and differentiation of
tumor vasculature.40e43 In terms of its mechanism of action, the
slowly proliferating phenotype of tumor vasculature, and the
increased sensitivity of endothelial cells to cellular damage in
response to cytotoxic agents likely makes the tumor endothelium
more sensitive to continuous, low-dose exposure to chemotherapy
interact with metronomic chemotherapy at various levels. (1) Metformin can promote
T regulatory lymphocytes and enhance the maturation of dendritic cells induced by

itochondrial bioenergetics induced by metformin would generate more slowly prolif-
ed-intensity chemotherapeutic drugs. (3) Metformin inhibits the EMT transcriptional
e antiangiogenic effects of metronomic chemotherapy. (4) Metformin antagonizes the
es of chemotherapy in cancer cells.45 (5) Metformin activates hypothalamic AMPK and
metronomic regimens that are not anorexigenic or gastrotoxic.25 AMP¼ adenosine
thelial-mesenchymal transition; mTOR, mammalian target of rapamycin.
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than to episodic near-MTD therapy. In 2000, Hanahan et al referred
to this low-dose, continuous dosing strategy as “metronomic,” and
suggested that its reduced systemic toxicity and its ability to target
endothelial cells and slowly proliferating tumor cells could offer
potential clinical benefits.44

More recent clinical studies have shown that metronomic
chemotherapy is a potential clinical alternative to either primary
systemic therapy or maintenance therapy, and preclinical studies
have suggested that, in addition to its well-established anti-
angiogenic effects, metronomic chemotherapy can activate anti-
tumor immunity. The mechanisms underlying the activation of
antitumor immunity by metronomic chemotherapy have only
recently been uncovered as most animal models are immunodefi-
cient, but a number of published studies suggest that the effects are
orchestrated by a reduction in T regulatory lymphocytes, and the
maturation and activation of antigen-presenting dendritic cells.

5. How can metronomic chemotherapy interact with
metformin?

As shown by Anisimov et al,1 phenformin potentiates the effects of
cyclophosphamide on various transplantable tumors, and recent
evidence suggests that antagonizing mitochondrial bioenergetics
potentiates the therapeutic effects of cytarabine in mice trans-
planted with human leukemia.19 Those findings support the notion
that metformin could potentiate the effects of traditional chemo-
therapeutic agents. Indeed, Jiralerspong and colleagues showed
retrospectively that metformin potentiates the pathological
response to neoadjuvant chemotherapy in diabetic breast cancer
patients without any evidence of increased toxicity.32

Could metformin potentiate the effects of metronomic chemo-
therapy? The evidence discussed so far suggests that metformin
can interact at various levels with metronomic chemotherapy.
Figure 1 is a schematic illustration of the mechanisms of action that
ought to be taken into consideration when incorporating metfor-
min into a metronomic therapeutic strategy.

6. Conclusion

At the time of writing, a search of the Clinical Trials (www.
ClinicalTrials.gov) website yielded 23 open, actively recruiting
studies in North America evaluating the efficacy and/or safety of
treating cancer patients with metformin. Eleven of these studies
are aimed at breast cancer patients, three studies are enrolling
colorectal cancer patients, and the remaining studies are enrolling
patients with prostatic (n¼ 2), pancreatic (n¼ 2), esophageal
(n¼ 1), endometrial (n¼ 1), head and neck (n¼ 1), brain (n¼ 1),
advanced-stage (n¼ 1), and other various types (n¼ 1) of cancer.

One prostate cancer study and three breast studies are using
metformin as a single agent before surgery to evaluate the molec-
ular correlates of response (immunohistochemistry for cell cycle
proteins, proliferation markers, etc.), while the other prostate
cancer study is using metformin as a single agent in castration-
resistant prostate cancer and evaluates prostate-specific antigen
levels as a primary outcome. The remaining studies are evaluating
the safety of combining metformin with tyrosine kinase (erlotinib
or lapatinib), mTOR inhibitors (sirolimus, temsirolimus), and/or
traditional high-dose chemotherapy (cisplatin, epirubicin, capeci-
tabine, gemcitabine). To our knowledge, there are no registered
clinical trials using metformin in combination with low-intensity
metronomic regimens for the treatment of human malignancies.

Why combine metformin, which inhibits mTOR signaling on its
own, with an mTOR inhibitor that causes immunosuppression?
Why combine metformin with high-dose chemotherapy? Tradi-
tional anticancer treatments do not take into account the damage
that they do to the immune system, yet they continue to be
a mainstay of cancer therapy. Moreover, the devastating effects of
traditional treatment approaches, and the cost of dealing with the
associated complications, reveal the urgency of developing
chemotherapeutic strategies that lessen suffering, optimize costs,
and allow the immune system to detect and destroy malignant
cells.

Metformin is an effective and safe hypoglycemic drug with
a potential new indication for managing and preventing cancer. The
evidence presented here suggests that metformin displays single-
agent therapeutic efficacy, at least in the setting of chemo-
prevention, and that it combines favorably with chemotherapy to
provide cancer patients with a therapeutic benefit. The above
therapeutic considerations, and in addition the low economic cost
of metformin and metronomic chemotherapeutic regimens,
warrant the initiation and support of additional clinical studies to
evaluate the efficacy of metformin in patient populations that are
not eligible for standard anticancer regimens. This may represent
a novel paradigm for the treatment of human malignancies that
reduces the costs of initial treatment and management of
treatment-related complications, which place such a heavy burden
on health systems around the globe.
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